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Abstract. A new algorithm is proposed to determine the flat pattern from a set of relatively shifted
images. It simultaneously searches for the flat pattern, the object image, the light levels, and option-
ally the relative displacements that optimize the sum of the error squares. We have applied the method
to real Ho observations, and examined in detail the dependence of the accuracy of the solution on the
iteration number, the light level change, the dither pattern, and the noise. It has been found that the
method can produce a flat pattern with an error down to 0.25% of the mean level in Ho observations
with low noise.

1. Introduction

Anideal imaging system should produce the image of an object whose data number
is proportional to the intensity of the object only, and is independent of the detector
position. In real situations the image recorded on the detector,

a=of +n, (1)

reflects not only the image of the object o, but also the non-uniform response
(commonly called ‘flat pattern’) f and the noise n (we suppose dark frame and
bias have been already subtracted). Note that the non-uniform flat pattern is the
combined effect of all the optical components of the observing instrument as well
as the detector itself.

Flat-fielding is a process of determining the object image o from the observed
image a. The most important step in flat-fielding is the determination of the flat
pattern f. The simplest way of getting the flat pattern is to image a uniformly illu-
minated object. Twilight and dome are widely selected for this purpose in nighttime
observations (e.g., Stetson and Harris, 1988). The major difficulty of this kind of
approach is that the object is not uniform to a sufficient accuracy. It is known
that the intensity of dome or twilight is uniform at best at the 1% level (Stetson
and Harris, 1988). In high-resolution solar observations, the flat image is obtained
by integrating a number of images taken while moving the telescope around a
quiet-Sun area near disk center (e.g., Yang et al., 2003). Even if this method is
simple and very convenient, it cannot be applied to the case where the field of

Lﬁ Solar Physics 221: 1-14, 2004.
1. © 2004 Kluwer Academic Publishers. Printed in the Netherlands.



2 J. CHAE

view contains high contrast objects so that the image integration is not effective.
Full-disk observations are such an example.

Dalrymple, Bianda, and Wiborg (2003) proposed a method of computing a flat
field from two orthogonal constant-speed scans of an image across the detector.
The strong point of this method is its fast speed. But the accuracy may not be high
enough especially when the constancy of the scan speed during the exposure is not
ensured.

An alternative approach is to construct the flat pattern from a set of relatively
shifted images of a non-uniform object (Kuhn, Lin, and Loranz, 1991; Wild, 1997,
Fixsen, Moseley, and Arendt, 2000). The algorithm of Kuhn, Lin, and Loranz
(1991, hereafter KLL) is relatively simple and hence has been frequently applied
to solar observations (e.g., Denker et al., 1999). This method makes use of the
property that the ratio of two images of the same object recorded on two different
pixels is equal to the ratio of the gains between the two pixels. Therefore, it is
possible to determine the pixel-to-pixel variation of the gain when two frames that
are displaced with respect to each other are analyzed together. To ensure sufficient
accuracy of the method, many pairs of frames may be used. The strongest point of
this method is that it provides a very convenient way of determining the flat pattern
even without uniform illumination. Moreover, the optical setup for obtaining the
flat pattern is the same as that for main observations so that the determined flat
pattern should be quite suited for main observations.

The KLL method, however, has a few shortcomings. As pointed out by the
authors, the solution has a gauge freedom that may produce a linearly varying
artifact-pattern. Especially when successive image frames do not have the same
mean signal level, a large systematic error may arise. In addition, when many
successive frames are used, the computing time increases drastically, which is
proportional to the number of all possible combinations of two frames or to the
square of the number of frames.

I propose a new method. Like the KLL method, my method uses a number of
frames that image the same object on the different positions of the detector. But
it does not take the ratio of two frames. Instead, the object image as well as the
flat pattern is treated as a free parameter to be determined. Moreover, the light
level that may vary from frame to frame is also treated as a free parameter to be
determined. In addition we can treat the relative displacements between frames to
be free parameters. The determination of the relative displacements and the shifting
of images are all done to sub-pixel accuracy using interpolations. Summing up, my
method simultaneously searches for the flat pattern, the object image, the light
level, and optionally the relative displacements that optimize the sum of the error
squares. The solution turns out to be much less subject to the shortcomings in the
KLL approach.
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2. Method

2.1. FORMULATION

Let i and j represent the row and column indices of a detector consisting of N, by
N, pixels, and o;; represent the ideal image of the object. Suppose we consecutively
take N, images of the same object with slightly different fields of view. Then the
kth observed image afj may be mathematically modelled as

k k
Qjj = CkOj—xy j—y Jij F Mij 2)

where x; and y; are the displacement of al{‘j with respect to 0;;, f;; the flat pattern,
and nfj the random additive noise. The parameter c; has been introduced to take
into account the light level variation that depends on the atmospheric condition and
SO on.

The logarithmic form of the above equation is

A = Ci+ Oy jy, + Fij (3)
where the capital letters represent the logarithms of the corresponding variables.
We seek to determine Cy, O;;, F;; and optionally x;, y; by minimizing the func-
tional

2 kN2, 0 .
X2 =) (Ci+ Oiyjmy, + Fij — A wii — xi. j — 3, )
ijk
where the new function w has been introduced to deal with the boundary effects,
and is defined as

o 1 0<i<N,—land 0<j<N,—-1,
w(i, j) = for . )
0 otherwise.
The functional may be also written as
X2 =D (Cr+ Oij + Fryu jiy — Ay )Wl + X0 j 4+ 20) - 6)

ijik

The minimization of the functional x? based on the linearization requires de-
termination of the gradient and the second derivative matrix (Hessian matrix) with
respect to the free parameters. Note the Hessian matrix is a huge array of (2N, N, +
3Ny)? size, so that working with the full elements of this matrix is a formidable
task. For tractability, we assume all the off-diagonal components of the matrix are
negligibly small. Then we only have to calculate the (2NN, + 3Ny) diagonal
components and the solution of the linearized equation is simply given by the
gradient divided by the corresponding diagonal components of the matrix. We thus
obtain the following formulae for the iterative solution:

Sou(Cr+ Oi joyy + Fij — ADw(i — xi, j — i)
Zk w(l - xk’ .] - yk)

: (7
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| CChF Oy + Fran i = Al )00 + X+ 90
> wii + x, j + w0

AO;; ~ , (8)

i (Cut Oy oy + Fyj — ADw(i — xi, j — )
Do wli = xie, j— yi) '

AC, ~ — ®)

When the improvement of the relative displacement (xy, yx) is necessary, it is
possible to use the iterative formulae

X (Gt Oy oy + Fyj = AW — i j = 3

Axk ~ - - s (10)
Zij w(l — Xk, J _yk)812
Zl.j(Ck + Oi—xk,j—yk + Fij - Afj)w(i — Xk, J — yk)gj
Ay~ — Ml e , (1)
Do wl —xk, j — )5
with
80," 801
L P, O licejmye

2.2. STARTING VALUES

Determination of the relative displacements of the images is crucial in our method.
The frame taken at the middle of the sequence was chosen as the temporary ref-
erence and the relative displacement (x, y;) of each image was determined with
respect to this reference which maximizes the cross-correlation between the two.
The cross-correlation function was calculated using the commonly adopted Fourier
transform method, and the offset values were determined with sub-pixel accuracy
based on five-point interpolation using the pixel of maximum cross-correlation and
its four neighboring pixels. Once the relative displacements of all the images with
respect to the temporary reference are determined, the reference is reset to a new
reference by subtracting the average from (xy, yi).

When the contrast of the non-uniform detector pattern dominates the observed
images, it is difficult to apply the cross-correlation technique to determine the rel-
ative displacements. In this case, we treat a rough flat-fielding before applying the
cross-correlation. We find that the pre-flat-pattern constructed by taking the median
of all the images at each pixel is good enough for this purpose.

Our choice of the other starting values is as follows:

F;=0, (13)

Oij =Y _Af/Ny (14)
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Ce =) A};/(N:Ny) = 0ij/(NeN,) . (15)
ij

ij

At this point I would like to mention that the final solution is not fully inde-
pendent of the starting values. This means that the solution is not unique, and the
choice of the starting values may be important. The nature and effect of this gauge
freedom was well described by KLL. They found that this gauge freedom may
introduce serious artifacts in the solution when the light level changes. As we shall
see, the gauge freedom is not a big problem in the present approach since the light
levels are self-consistently determined.

2.3. POSTERIOR ADJUSTMENT

There is a degeneracy among Cy, F;; and O;; by constant factors. For the unique-
ness of the solution, we constrain Cy and F;; to satisfy

(C)=) Ci/Ny=0 and (F)=) F;/N,N,=0. (16)
k i,j

This constraint is easily fulfilled by adding the appropriate values to the determined
Ck, Ej’ and Oij-

2.4. PROGRAM IMPLEMENTATION

The algorithm has been implemented in the Interactive Data Language (IDL). The
program code is available from the author on request. Given fourteen images of
1024 x 1024 pixels, the computing time for 10 iterations was 160 s in a laptop com-
puter equipped with the Intel Pentium M 1.6 GHz processor, Microsoft Windows
XP, and the Interactive Data Language v6.0.

3. Application to Real Hx Observations

3.1. Ha —1.2 A OBSERVATIONS

We took a set of images of a solar active region at the He —1.2 A on 4 October 2003
using the Big Bear Solar Observatory 65-cm telescope. Using the fast CCD digital
camera 1M30P made by the Dalsa company, 30 frames of 1024 by 1024 pixels
were captured each second, but only the best one, selected with the technique of
frame selection, was stored. Then we manually moved the telescope a little bit and
took a new image that was shifted with respect to the previous one. This process
was repeated until all of the 14 images were stored. Figure 1(a) shows one of the
observed images Af-‘j . It took about 75 s to finish this observation.

Figure 1(b) and (d) are the flat pattern and the object image determined after
20 iterations using our method. Different kinds of features are easily recognized
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Figure 1. The logarithms of (a) one of the fourteen observed Ho — 1.2 A images Ai.‘j, (b) the flat
pattern Fjj, (c) the flat-field-corrected image A:.‘j — Fjj, and (d) the object image O;;. The gray scale
range is the median value =+ 0.05.

in the flat pattern including ubiquitous dots, circle-like dust diffraction patterns,
the low-frequency fringe pattern, and the high-frequency fringe pattern, the dark
streak in the upper half portion of the left boundary that may be attributed to the
field stop. These features are absent in the object image, and hence may be of
purely instrumental origin.

Note the object image in Figure 1(d) is different from the flat-field-corrected
image in Figure 1(c) in a couple of ways. They have slightly different fields of
view. In addition, the object image has a higher signal-to-noise ratio than the raw
image, for it has been constructed from all the raw images. Supposing that the
object image is noise-free, we can estimate the noise in the flat field corrected
image in Figure 1(c). It is found to be about 2.6% of the mean value.

We find that the root-mean-square contrast of the flat pattern, 3.4% of the mean
value, is smaller than that of the object image (true pattern), 5.7%. Therefore, the
true features are better identified in the raw image in Figure 1(a) than the flat
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Figure 2. The logarithms of (a) one of the fourteen observed Ho centerline images Ai.‘j, (b) the flat
pattern Fjj, (c) the flat-field-corrected image A:.‘j — Fjj, and (d) the object image O;;. The gray scale
range is the median value £ 0.1.

pattern, and this is one reason why our determination of the displacements was
successful.

We also find that the light level changes from frame to frame. The standard
deviation of the fluctuation is found to be 1.3%. It is likely that the fluctuation is
due to the time-varying seeing condition, which may be commonly encountered in
the short-exposure observations. In the next section we will demonstrate that this
fluctuation is a big obstacle in the KLL method, whereas our method is much less
subject to the problem.

3.2. Ho CENTERLINE OBSERVATIONS

Figure 2(a) shows one of nine images of a quiet area near disk center taken at the
Ha centerline. The light near the upper and right edges was blocked by the field
stop. We have processed the image data excluding this blocked region, since the
light level in the region is too low to carry information good enough for image
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Figure 3. An example of a Reuleaux triangle constructed from an equilateral triangle whose side
length is 1. An example of the dither pattern with Ny = 10 based on this Reuleaux triangle is
represented by the plus symbols.

processing. Figures 2(b) and 2(d) shows the flat pattern and the object image de-
termined from the Ho centerline image data. By default the region excluded in the
data processing is set to the median values. In these Ha centerline observations,
the root-mean-square contrast of the flat pattern is 4.0% of the mean value and
that of the object image is 8.7%. Note the object image in Figure 2(d) has higher
signal-to-noise ratio than the single flat field corrected image in Figure 2(c).

4. Performance Test

In this section, we evaluate the performance of our method, especially in compar-
ison with KLL’s method.

4.1. QUALITATIVE COMPARISON WITH KLL’S METHOD

Our method may look more complex than the KLL approach. But it has some
advantages over the KLL method. It can deal with the situation where either the
overall intensity ¢; changes from frame to frame, or the input values of displace-
ments are not accurate enough so that they need to be improved. Moreover, our
method produces not only the flat pattern, but also the object image as the output.
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4.2. SIMULATED DATA

We use simulated data for this test. Construction of simulated data is done in the
following steps. We choose N, x N, as the format of the simulated data. We take
the central N, x N, pixel region of the flat image in Figure 1 as the input flat image
for the data construction.

Then we choose a ‘dither pattern’, that is, the spatial distribution of the re-
lative displacements (xi, y). It is important to avoid common multiples among
the displacements in the dither pattern (Kuhn, Lin, and Loranz, 1991) which may
introduce a geometric artifact. There is an infinite number of choices for the dither
pattern to satisfy this condition. For our test we choose the Reuleaux triangle (e.g.,
Arendt, Fixsen, and Harvey Moseley, 2000), which was shown to have good mer-
its for the dither pattern. This kind of dither pattern is characterized by two free
parameters: the side length of the basis triangle L and the number of points N;.
Figure 3 presents an example of a 10-point dither pattern constructed from the
Reuleaux triangle of L = 1.

Next we set ¢; to random numbers whose mean and standard deviation are
expected to be unity and a small fraction of unity, respectively. The noise nf.‘j is
similarly set to random numbers whose mean and standard deviation are expected
to be zero and a small fraction of unity, respectively. Finally we construct the
simulated data afj using Equation (2).

The free parameters to be used in the construction of the simulated data are the
number of images or the number of points in the dither pattern (Ny), the size of
the dither pattern (L), the standard deviation of the light level change o, and the
standard deviation of the noise (0,,). We use the fixed values N, = N, = 512 for
the test. The standard error in the flat pattern, which is of our interest for now,

€ = / " = 1)

ij
) (17)

NN,
can be correctly determined since both the input l.ij“ and the output i‘]’.“t are known.

4.3. COMPUTING TIME

In our method the computing time for a single iteration is proportional to N, Ny N.
In contrast, the computing time in KLL’s method is proportional to N, N, N]%. Thus
when many frames are used, our method is superior to KLL’s method in saving
computer time. This characteristic is demonstrated in Figure 4.

4.4. CONVERGENCE AND ACCURACY

Figure 5 shows how the iterative solution converges toward the true solution in the
case where o. = 0, 0, = 0.001, L/N, = 0.2, Ny = 10. The input values x;
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Figure 4. The dependence of the computing time of 10 iterations on the number of image frames.
The images are 512 x 512 format.
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Figure 5. The convergence of the iterative solution in the case the overall intensity remains constant.

and y; have been rounded off so that the image shifts are to be done by integer
multiples of pixels. For future reference we explicitly provide the coordinates of
the resulting points of the dither pattern in pixel unit: (50,—14), (40,17), (21,43),
(—5,56), (—28,35), (—44.,7), (—51,—-24), (—27,40), (5,—43), (37, —36). Moreover,
we assume that the output values x; and y, are correctly known in advance by
simply identifying them with these model input values. Note that this assumption
is effective only for this ideal case. In practical situations, the real displacements
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Figure 6. The convergence of the iterative solution in the case the light level changes by 1%.

may be different from the target values because of errors in the telescope pointing
and the effect of the seeing. Therefore, the displacements have to be determined
self-consistently from the data as described in Section 2.2.

Figure 5 shows that the two methods have very similar convergence patterns in
this ideal case, and the KLL method is a little better than our method in accuracy.
The difference in accuracy is, however, so small that it may not be significant. After
64 iterations, our method produces a solution with an accuracy of 0.045% and the
KLL method produces a solution with an accuracy of 0.035%.

The lower accuracy or the slower convergence in our method may be attributed
to the larger number of free parameters to be determined in our method. In the
present case we have set ¢, x, and y; to be fixed in our method, so the number of
the free parameters to be determined in our method is 2N, N, which is double the
number of the free parameters to be determined in the KLL method.

4.5. EFFECT OF LIGHT LEVEL VARIATION

When the overall brightness changes with time, the two approaches may produce
totally different results as illustrated in Figure 6. In this case we set o, = 0.01
keeping all the other parameters to be the same as above. Note that the implied light
level change is very small (1%), which may often arise in real observations, for
example, by seeing variations. In our method ¢y is treated to be the free parameters
to be determined.

Figure 6 shows that the KLL’s iterative solution diverges from the true solution
when the light level changes. This kind of divergence or low accuracy of the final
solution arises because the light level change from frame to frame leads to a spatial
gradient in the solution (Kuhn, Lin, and Loranz, 1991). To minimize this effect,



12 J. CHAE

0.100 ¢

0.010 -

Standard Error ()

0.001 N

0.01 0.10 1.00
Displacement Size (L/N,)

Figure 7. Dependence of the standard error on the characteristic size of the relative displacements.

one may suggest to correct the data by dividing each frame by the corresponding
mean or average value so that they have the same mean intensity before the KLL
method is applied. This correction, however, is not effective. The mean or median
brightness of the data does not correctly reflect the light level since the image
data have slightly different fields of view and are affected by the non-uniform flat
pattern. Very small amounts of light level change remaining in the corrected data
may be still serious in the iteration as seen in Figure 6.

Figure 6 also shows that our method is subject to the same problem, too. But
the problem is much less serious in our method than in the KLL method since the
light levels in our method are self-consistently determined from the iteration itself.
It is obvious that the ability to handle light level change puts a practical limit on the
accuracy. In our method it is found to be about 0.25%, which can be achieved after
20 iterations. It is found from experiments that this accuracy is nearly insensitive
to the amount of light level change o..

4.6. DEPENDENCE ON DISPLACEMENT SIZE

Figure 7 presents the effect of L/N, on the standard error. For these results, we
used o, = 0.01, Ny = 10, 0, = 0.001. The input displacements x; and y; have
been rounded off in the construction of the simulated data. Unlike the ideal situ-
ation above, from now on the output displacements are treated to be free parameters
to be self-consistently determined from the data. Therefore a part of the standard
error may come from the uncertainty in determining these values. The figure shows
that the optimum choice of L/N, is from 0.10 to 0.25. Too small values of L may
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Figure 8. Dependence of the standard error on the number of frames (leff) and noise (right).

lead to a deficiency of low-frequency information in the flat pattern, and too big
values of L may result in serious errors in determining the relative displacements,
and the reduction of overlapped pixels.

4.7. DEPENDENCE ON NUMBER OF FRAMES AND NOISE

The left panel of Figure 8 shows the dependence of the standard error on the num-
ber of frames N and the noise o,,. If the noise level in the data is 0, = 0.001, the
dependence on N is weak for Ny > 5. Thus a small number of frames is enough.
On the other hand, when the data contain higher noise (o, = 0.01), more frames
produce better results. To attain accuracy in the case o, = 0.01 that is comparable
to the case o, = 0.001, more than fifty frames are required.

The right side of Figure 8 shows the dependence of the standard error on noise
in the case Ny = 10 and L = 0.2N,.. The accuracy of the solution is, for example,
0.0025 when o, = 0.001 and 0.0045 when o,, = 0.01.

5. Summary

A new method has been presented to determine the flat pattern from a set of re-
latively shifted images of a non-uniform object. Unlike the method of KLL we
simultaneously determine the flat pattern, the object image, the light level change,
and the image displacements.

We have found that the method successfully works in real Ho observations. It
has been demonstrated from the performance test that our method is superior to
KLL’s method in computing time and the ability to handle light level variation.
The dependence of the iterative solution on the iteration number, the noise level,
the size of the dither pattern, the number of points in the dither pattern (that is,
the number of frames) has been examined in detail. As a result we found that the
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optimal size of the dither pattern is from 10% to 25% of the image size. A solution
with an error less than 0.25% can be obtained using our method after about 20
iterations in the typical case with low noise (Ny = 10, 0, = 0.001, L = 0.2N,).
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Appendix A. KLL’s Iterative Solution

k h kh h k hk
i<k [(Az‘j B Ai—xk+xh,j—yk+yh> wij + <Az‘j B Az‘—xh+xk,j—yh+yk> Wij ]

v kh hk - (18)
Zk,h<k [wij + w;; ]
wil' = wl — Xk + x4, j — e + ) (19)
Zk,h<k [E—xk-‘th,j—yk+thzl'{Jh + Fi—Xh-‘er-,j—yh+yk wzhjk]
AF; =Fj— F; + (20)

kh hk
Zk,h<k [wij + w;; ]
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