Blog Image

Earthshine blog

"Earthshine blog"

A blog about a telescopic system at the Mauna Loa Observatory on Hawaii to determine terrestrial albedo by earthshine observations. Feasible thanks to sheer determination.

Differential refraction

Data reduction issues Posted on Aug 29, 2012 15:16

We have to determine the radius and centre of the lunar disc in order to reduce observations.

In doing that we must be aware that differential refraction causes the Moon to appear non-circular as it comes closer to the horizon. Using a formula from the Nautical Almanac Explanatory Supplement we generate the following table for 600 mmHg, 10 degrees C and 30% relative humidity:

Z d_refr am
——————
27 1″ 1.1
69 6″ 2.8
75 12″ 3.9

where z is the zenith distance in degrees, d_refr is the differential refraction in arc seconds and am is the airmass. The differential refraction is calculated over a 1-degree distance centred on the given zenith distance. Our FOV is about 1 degree wide and one pixel covers about 7″.

We thus see that the Moon is differentially refracted by less than one pixel up to about 2.6 airmasses. Two pixels are reached about 26 degrees (4 airmasses) above the horizon.

Some of our observations are certainly close to the horizon, as we have tried to observe when the lunar phase is near or less than 30 degrees (at Newish Moon).

At 30 degrees the uncertainty in our determination of disc radius and disc centre (based on a circular assumption) is thus starting to be challenged by the differential refraction.



Driving on the Moon

Data reduction issues Posted on Aug 29, 2012 14:14

In order to extract fluxes from particular areas of the Moon we need to take lunar libration into account. Based on the synthetic model code Hans wrote we can do that now.

On the left is the synthetic model. On the right is the observed image. On it are some dots – they are supposed to be inside Mare Crisium and Mare Nectaris and two other locations on the darkened side. We see that we nail Nectaris and Crisium. Doing this for every observed image we will be able to extract feature fluxes and compile DS/BS statistics.